ASPECTS OF THE DYNAMICS OF A NONLINEAR
VISCOELASTIC FLUID
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Boundary-value problems for systems of equations describing steady flows of a nonlinear
viscoelastic fluid are reduced to variational problems.

§1. Nonlinear Viscoelastic Fluids

The stressed state in a nonlinear viscoelastic fluid is determined by the strain history. In a reason-
ably general situation the stress tensor o at time t in an incompressible nonlinear viscoelastic fluid that is
isotropic in the undeformed state is determined by the expression [1]

o(t) = —pl +FIE(t—3)). (1

Here p is the hydrostatic pressure; I is the unit tensor; and F is an isotropic symmetric nonlinear tensor
functional of the tensor function E(t —s), which is a measure of the strain from the time t to the time t — s.
This function has the form [2]

0x; 0x;

Eij(t—s)zé;(—a*a—xz—-ﬁij, (2)
where x; and x, are the Cartesian coordinates of the point at which o is determined at the times t and t — s,

respectively; and 51j represents the components of the unit tensor.

For strain processes that are smooth in the neighborhood of the point t the tensor function E can be
formally expanded in a Taylor series in the neighborhood of the point s = 0:

%(-—1)””’13"

E(t—s)= "

By, 3)

n=]
where
d® E(t — s)
|
By = (=1 [ dsm ]520-

The elements of the tensor By, = (Bi(?)) have the form

Ov; Ov;
B — —L i
4 ax,- + Oxi (4)
0 0B v, .. Ou;
D) — 2 p(n o220 pln) .71 piay,
Bt = G B o T 5y Bri T, Bim

Here the v are the components of the particle velocity vector of the medium at time t.

It is clear that a certain region 0 = s =< s; always exists in which the series (3) converges. For real
materials the functional F has the property of diminishing memory. This means that the strains of the
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medium in the recent past exert a greater influence on the present stress magnitude than do strains in the
distant past.

Consequently, for many materials and in many situations, in particular the cases of thermoplastic
polymers at high temperatures and dilute polymer solutions, the stress tensor in the medium is deter-
mined mainly by the behavior of the function E(t — s) in the neighborhood of s =0, i.e., by the first terms
of the series (3).

Substituting (3) into the functional F, we arrive at the expression
0 = —-pI + Q [311 Bzv B3> voe ~]) (5)
in which Q is 2 symmetric tensor function of B; (i =1, 2, 3, . . . ).

4
If we assume that the function Q is a polynomial in the tensors Bj, we can invoke the theorem on
the transformation of matrix polynomials {3] to reduce Q to canonical form for a very broad class of steady
flows of the fluids in question.

It turns out in the final analysis that for many flows the equation of state (1) is equivalent to the ex-
pression
6=—pl+¢ B 1o Bi + @ By, (6)
in which the ¢; are functions of invariants of the tensors By and B,.
The representation (6) of relation (1) is exact for certain steady flows, such as simple shear [2],
Couette, Poiseuille, and general rectilinear [4] flows, flows generated by the rotation of bodies of revolu-
tion [5], and helicoidal flow [6]. For some flows, such as rectilinear flow in an arbitrary cylindrical tube,

the transition from expression (1) to relation (6) incurs a very slight error [7]. We shall take for granted,
therefore, that the equation of state of the given medium is described by relation (6).

It is easily verified that the equation of state (6) admits the existence of a potential function & de-
pending on invariants of the tensors B; and B,, such that

oD 7

0+ pdsy=1,= 53_5}) @

Hence it follows that the functions ¢; and & can be represented in the form

_daty) 2 dhUy ) dRUy)

W= T, T3l Ty, TR Ty (8)
o =/ (1y); @3 = f3 (1o

1 1
CD=§‘fl([2)»]—"3—]3f2(12)-}—[7f5(12), 9)
where
I, = BY BY; 1,— B BY BIY; I, = BYY B

The functions dfy () /dl, f,(I,), and f3(,), canbe determined experimentally. The dependence df;(1;)/ dl,
is found from viscosimetric tests. The function f, (I,) can be determined from the secondary difference be-
tween the normal stresses in flows close to simple shear flow [8], and methods for the determination of
f;(Iy) are described in [5].

§2. Variational Problems Associated with the Motion

of Nonlinear Viscoelastic Fluids

The solutions of the motion problems for the investigated media reduce to the integration of equa~
tions in the vector velocity function v, which are obtained by substitution of the equation of state (6) into
the set of stress equations of motion; for stationary processes, neglecting inertial terms, these equations
have the form

0o;;
8x] +F; =0. (10)
§

Here the F; are the components of the volumetric force vector,
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In view of the incompressibility of the medium the vector function v must also satisfy the equation

divo = 0. (11)

The boundary conditions have the form
7=0 on Sy, (12)
0;;@)n; = N; on S. (13)

Here 8; = 8; S;istheboundary ofthe givenflowdomainQ;8 =§; X\ §y; olj({;) is a function describing the
components of the stress tensor for the velocity vector function v, i.e., U]_J(V) can be regarded as the val-
ue of a certain nonlinear operator on the vector function v [this operator is determined by Egs. (6) and
@)l n; is the cosine of the angle between the normal to the surface and the j-th coordinate axis; and the Nj
are functions specified on S.

Consequently, on the motionless surface S; bounding the given flow domain the velocity of the fluid
is set equal to zero, and on the rest of the surface (on 8) it is given by the distribution of the components
N; of the surface forces N, We assume that N; € C(8) and Fj € C(Q).

We now consider the minimization problem for the functional

- )
W(U)—-—‘ (D—{OB(Z)}B” dQ—2 Ni'UidS—-—2 FiUidQ. (14)
i
Q S Q

Here & is given by relation (9). The braces in (14) signify that the term 8%/ BB(z) is determined by solving
the given problem and is not varied.

More precisely, we state the following problem: in the class B of all admissible vector functions,
i.e., among solenoidal vector functions continuous in 2 together with their partial derivatives through
third order and zero-valued on S,, find the vector function that minimizes the functional (14). Clearly, B
is a linear manifold.

_ Let v minimize the functional (14); we analyze the value of the functional for the vector function v
+ ah, where ¢ is a number and h is any vector function from the admissible class.

Now
W (v oh) > ¥ (o) (15)
for all o.

The functions f;(I;) (i =1, 2, 3) are assumed to be continuous on the semiaxis [0, «) together with
their first- and second-order derivatives. Then the derivative (d/da)¥ + oh) exists. For given vector
functions v and h the expression ¥(v + ¢h) may be regarded as a function of . Inasmuch as this function
is minimized for o =0, at the latter point its derivative with respect to a is zero, i.e.,

d o -
[&;‘I’(v+ah)] = f 7;;(0) B! () dQ —2 jNi h,dS —2 fFihi dQ =0, (16)
o=0 Q S Q
Here Bi(i,) () represents the components of the strain rate vector for the vector function h; and Tij(V)
represents the components of the stress deviator for the vector v.

Recognizing that divh = 0 and taking relation (4) and the Ostrogradskii equation into account, we
transform the first term in (16):

_ _ _ i) ~
j v;; @) B} (h)dQ = S 043 (0) B (A)dQ =2 g 57 (01 @) dQ
by 8 7

Q

ao-ij(zﬁ = g S _ Sacij(g) ) 17
_2SThidQ—~2. h;0;;(0)n;dS—2 3%, h; dQ. (17)

b 7 $ 8
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Substituting the resulting expression into relation (16), we find

j(acaii(;) +F,.)hidsz—§ (0;;@W)n;— N;) h;dS = 0. (18)
Q %

1

Since the latter equation must be valid for any vector function in class B, we can, in particulay,
choose h equal to zero on S, whereupon we have

X(MM:I. )hi 49— 0. (19)
Ox;
Q
Relation (19) holds for any vector function EG B that vanishes on 8. We now show that this situation
is possible only if v satisfies the system of differential equations

99;00) L p 0 (=1, 2, 93 (20)
0x;
We proceed by assuming the opposite, denoting by R the vector function defined by the components
R; = a—oa’é(i + F;. Then, since v B, the function R will assume nonzero values, if not over the entire

J
domain £, then at least on some set @y < Q having nonzero measure. If we construct a vector function

h ¢ B, zero-valued on S, such that the direction R coincides with the direction of h at every point of
in which R is nonvanishing, we have

kEdQ:((i%iiﬁi—{—Fi)hidQ>0, @
J

v}
Q

which contradicts Eq. (18). Consequently, all that remains is to prove that such a vector function h does
exist. The vector function we seek, h = (h;, hy, h;), can be constructed from the relations

hl
o= htnn )y 2= R, % x), (22)
2 h2

=

oy | Oy  Ohy (23)
ox, "oxy, ' dxy '
B=0 on S, (24)
Here f;(x), Xp, X3) and f,(x), %y, X3) are certain triples of continuously differentiable functions defined at
every point x = (x{, X;, X;) € Q by the direction of the vector function R.

Once the values of h; and h; have been determined from Eqs. (22) and substituted into (23), we can
verify that problem (22)-(24) is equivalent to the following:

5} on o -
— (h k- S = 25
o (hof) + ox, + 3% (hofy) = O, (25)

=0 on S, (26)
If the boundary 8, of the domain Q is sufficiently smooth, it can be specified in the parametric form
o=, B (k=12 3) (27)

so as to make the right-hand sides of these equations continuous and have continuous first-order derivatives
in a certain domain D of the two~dimensional space (t;, t;).

Then our problem reduces to the determination of an integral surface for (25) containing the following
two~-dimensional manifold:

o= X (b b))y My =y (%t 1)) =0 (k=1 2, 3). (28)

If the determinant
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fl 1 fZ

9% 0% 0%

A= | ot o o (29)
ot, of, oty

has a nonzero value on the manifold (28), then a solution exists for the problem (25), (28) [9].

Therefore, given fairly general assumptions regarding the boundary of the analyzed domain, the
vector function v minimizing the functional (14) in class B satisfies the system of differential equations
(20).

Now from relations (18) we have

X (0:;@)n;— N,) hdS =0, {30)

S

Hence it follows that the vector function v satisfies the boundary conditions (13), as otherwise, con-
structing a vector function h € B such that the direction of h coincides at every point of S with the direc-
tion of the vector defined by the components U; = o j(?) ny — Nj, we arrive by analogy with the foregoing
discussion at an inequality that contradicts Eq. (30).

We can consolidate the results to now in the form of a theorem.

THEOREM., Uniier the above-stated conditions, if a vector function v € B minimizes the functional
(14) in class B, then v satisfies the system of equilibrium differential equations in the velocity components
(20) and the boundary condition (13).

Thus, the solution of the motion problem for a nonlinear viscoelastic fluid, i.e., the solution of the
system of equations (20) and (11) subject to the boundary conditions (12) and (13), reduces to searching for
an extremal point of the functional (14) in class B. It follows from the theorem that the boundary conditions
(13) are natural, so that there need not be special concern for the satisfaction of condition (13) in solving
the variational problem by the Ritz method.

Note that the desired vector function v is determined as the limit in a certain metric of a A minimizing
sequence {vn} formed from elements of class B [provided that this sequence converges, i.e., vn ~ v, and
that lim ¥(vy) = ¥ ()] [10, 11], and it can turn out that this limit has poorer differential properties thana

oroo

vector function of class B. In this case we call v a generalized solution of the problem (20), (11), (12),
(13).

§3. Rectilinear Motion of a Nonlinear Viscoelastic

Fluid for a Nonuniform Temperature Distribution

We now investigate a nonisothermal flow of a nonlinear viscoelastic fluid in an arbitrary cylindrical
duct. We introduce a motionless Cartesian coordinate system (x;, Xy, X3) in such a way that the x; axis
is parallel to the generatrix of the cylinder. We assume that the flow process is steady and is directed
along the axis of the duct. We assume, further, that the temperature T in the medium depends only on the
coordinates x; and x,, i.e., that

T=T (%, %), (31)

where the function T(x;, X;) is considered to be known and continuously differentiable in the domain of the
cylinder cross section, Q. We also say that the components of the velocity vector are determined by the
expressions

Up =10 (X, Xy); 0 =0,=0, (32)
In the general case of the strain of a nonlinear viscoelastic fluid under conditions of a nonuniform
temperature distribution, the stress tensor in the medium is determined, correct to the hydrostatic pres-

sure, by the strain and temperature history [12]. By virtue of relations (31) and (32) the temperature of
points in the fluid remains constant at times preceding the present. Then the stress tensor in the fluid
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is determined at every point of the domain of the cylinder cross section, 2, by relation (1); only the func-
tional F is determined by the temperature of the medium at a point, i.e., F is an abstract function of the
numerical argument T, and we denote it by Fr. Now, by analogy with relation (1), we have the following
expression for the stress tensor:

6 =—pl+ ﬁg [E(t—9)- (33)

As in [4], we can verify that the stresses at every point are determined by the expression
0 =—pl+ CPI,T(]z) B, + QJQJT([Z) B% + @37 ({2 By, (34)

in which the ¢; (I;) are functions of the invariant I, and at every point of Qaredetermined by the value of
T corresponding to the function ¢; T(Ip). Thus, the functions ¢; T(I;) can be treated as abstract functions
of the argument T, i.e., there is associated with every value of T a numerical function of the argument I,.
The functions goi,T(Iz) determine numerical functions of the arguments I, and T, namely o;(I,, T), in such
a way that qoi’q(é) = @;(¢, q) for any values of £ and g from the half-strip A (0 = £ < =5 ¢ =g = b), where

a= min_ T(x, %) b= max T(x, %) (35)
(%1,%2)€Q (fLx)eR

The functions ¢j(L,, T) characterize the properties of the material in strain at a constant tempera-
ture T. In the given problem, therefore, the equation of state of the fluid reduces to the form

o =—pl+ (I, T)Bi+ ¢ (Ins T) Bi + @ (1, T) B,. (36)
Now from the equations of motion we deduce
ap 0 ov 0 du
PSR I s T » Aa)| T - 3 37
oxs  ox, [%( v T ) 5 ] T [%(12’ T =) 5 ] &
P =7, X))+ Axs, (38

where v (x4, Xp) is a certain function of x; and x,, A = 8p/8xy = const, and

e[ 2]

The boundary condition provides contiguity between the medium and the surface of the cylinder, i.e.,
v=0 on S, (40)
The function ¢;{,, T) generates stresses that dilate (compress) the fluid and, as apparent from (37),
does not affect the velocity distribution in the medium for the analyzed rectilinear flows. The stresses

generated by the function ¢y (I,, T) must be equalized by the volumetric forces. In the absence of the latter
it is required to set ¢, (I, T) = 0 in order for rectilinear motion of the type (32) to be possible.

Expression (37) has the following implication: in the flows described by relations (31) and (32) a non-
linear viscoelastic fluid in which the stresses are determined by the strain and temperature histories has
the same velocity distribution as a nonlinear viscous fluid whose viscosity depends on the invariant I, and
the temperature T.

As shown in [13], given fairly general assumptions, problem (37), 40}, is equivalent to the problem
of minimizing the functional

Iz

V(o) = - | dxdx, @i (Lo Tt 1) dl, + 5 j P iy d,,
4 0xy
Q 0 Q
u/g, = 0.

Existence and uniqueness conditions for the generalized solution of the investigated problem are also
established in the above-cited paper.
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